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1. Introduction

In a helicity formalism the simplest Yang-Mills amplitudes are the MHV amplitudes where

precisely two external gluons have negative helicity and the remaining legs all have positive

helicity. If legs j and k have negative helicity, the colour-ordered [1] partial amplitude takes

the form [2],

Atree
n (1+, . . . , j−, . . . , k−, . . . , n+) = i

〈j k〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉
. (1.1)

We use the notation 〈j l〉 ≡ 〈j−|l+〉, [j l] ≡ 〈j+|l−〉, with |i±〉 being massless Weyl spinors

with momentum ki and chirality ± [3, 4]. The spinor products are related to momentum

invariants by 〈i j〉 [j i] = 2ki · kj ≡ sij with 〈i j〉∗ = [j i]. As in twistor-space studies we

define,

λi = |i+〉 , λ̄i = |i−〉 . (1.2)

Inspired by the duality between twistor string theory and Yang-Mills [5] (and generalising

a previous description of the simplest gauge theory amplitudes by Nair [6]), Cachazo,

Svrček and Witten proposed a reformulation of perturbation theory in terms of off-shell

MHV-vertices [7], which can be depicted,
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∑

k−
i1

k+
i2

k+
i3 . . .

× ×
1

p2
j1

× . . . ×

The off-shell continuation for a leg of momentum p was achieved by replacing λ(p) by,

λa(p) = paȧη̄
ȧ , (1.3)

where η̄ȧ is an arbitrary reference spinor. While individual CSW diagrams depend on η̄,

the full amplitude is η̄-independent. This reformulation has led to or inspired a variety of

calculational advances, both for tree level scattering [8] and at loop level [9] in Yang-Mills

theory.

This reformulation has been demonstrated to reproduce all known results for gluon

scattering at tree level and, often, gives relatively simple expressions for these amplitudes.

Although originally given for gluon scattering only, these rules have been shown to extend

to other types of massless particle [10] and indeed to massive particles [11]. It has been

shown [12 – 14] that, with the correct off-shell prescription, these vertices can be used to

reproduce known one-loop results [15, 16] in supersymmetric theories.

In an alternate approach to computing tree level amplitudes, Britto, Cachazo, Feng and

Witten [17] obtained a recursion relation based on analytically shifting a pair of external

legs,

λi −→ λi + zλj , λ̄j −→ λ̄j − zλ̄i , (1.4)

and determining the physical amplitude, An(0), from the poles in the shifted amplitude,

An(z). This leads to a recursion relation in the number of external legs, n, of the form,

An(0) =
∑

α

Ân−kα+2(zα) ×
i

P 2
α

× Âkα
(zα) , (1.5)

where the factorisation is only on these poles, zα, where legs i and j are connected to

different sub-amplitudes. This is depicted below:

i

P 2
α

k̂i k̂j

∑

α

These recursion relations also give relatively compact formulae for tree amplitudes [18,

19]. Recursion relations based on analyticity can also be used at loop level both to calculate

rational terms [20] and the coefficients of integral functions [21].

The factorisation properties of the amplitudes seem to lie at the heart of both ap-

proaches. In both cases the amplitude is expressed as a sum of its factorisations in a well
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specified manner. As such, one might hope to derive the MHV-vertex formulation by ap-

plying an analytic shift and obtaining a recursion relation. In ref. [22] it was demonstrated

that such shifts exist and can be used to derive the MHV vertex approach in gauge theory.

The shift affects all of the negative helicity legs, kmi
,

λ̄mi
→ ˆ̄λmi

= λ̄mi
+ zriη̄ , (1.6)

with the ri chosen to ensure momentum conservation.

Most of the above developments have been made for gauge theory amplitudes. The

existence of a BCFW recusion relation for gravity amplitudes was strongly supported in [24,

25], and in this article we construct a CSW approach using the newly established shift (1.6)

under the assumption that gravity amplitudes are sufficiently well behaved for large values

of z in (1.6).

The key ingredient in obtaining the MHV rules is the analytic structure of the am-

plitude which also underlies the derivation of the recursion relations. In this context it

becomes clear that these two formalisms have their roots in the same physical behaviour

of on-shell amplitudes.

2. Graviton scattering amplitudes

Graviton scattering amplitudes are generally considerably more complicated than those

for gauge theory. To date, explicit expressions have only been given for the MHV

amplitudes [23, 24] and for the six-point NMHV amplitude [25, 26]. (As for gauge

theories, amplitudes with all helicities identical vanish, as do those with one different,

M(1±, 2+, 3+, · · · , n+) = 0.)

In principle, gravity amplitudes can be constructed through the Kawai, Lewellen and

Tye (KLT)-relations [27]. The explicit forms of these, up to six points, are,

M tree
3 (1, 2, 3) = − iAtree

3 (1, 2, 3)Atree
3 (1, 2, 3) ,

M tree
4 (1, 2, 3, 4) = − is12A

tree
4 (1, 2, 3, 4)Atree

4 (1, 2, 4, 3) ,

M tree
5 (1, 2, 3, 4, 5) = is12s34 Atree

5 (1, 2, 3, 4, 5)Atree
5 (2, 1, 4, 3, 5)

+ is13s24 Atree
5 (1, 3, 2, 4, 5)Atree

5 (3, 1, 4, 2, 5) ,

M tree
6 (1, 2, 3, 4, 5, 6) = − is12s45 Atree

6 (1, 2, 3, 4, 5, 6)(s35Atree
6 (2, 1, 5, 3, 4, 6)

+ (s34 + s35) Atree
6 (2, 1, 5, 4, 3, 6)) + P(2, 3, 4) ,

(2.1)

where P(2, 3, 4) represents the sum over permutations of legs 2, 3, 4 and the Atree
n are the

tree-level colour-ordered gauge theory partial amplitudes. We have suppressed factors of

gn−2 in the Atree
n , as well as a factor of (κ/2)n−2 in the gravity amplitude.

This formulation allows results from Yang-Mills theory to be recycled in theories of

gravity and supergravity [28 – 32]. While these relations are directly applicable to tree

amplitudes, this formulation also has implications for loop amplitude calculations, partic-

ularly in unitarity based methods where the tree amplitudes are used to compute the loop

amplitudes [33 – 35]. Consequently, similar relationships can hold for the coefficients of

integral functions [36].
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Although, in principle, the KLT relations can be used to calculate gravity tree ampli-

tudes, they have several undesirable features. Firstly, the factorisation structure is rather

obtuse. The Yang-Mills tree amplitudes contain single poles so we might expect un-physical

double poles to appear in the sum. These are actually canceled by the multiplying mo-

mentum factors, but often in a non-trivial manner. Secondly, the expressions do not tend

to be compact as the permutation sums grow rather quickly with the number of points. In

fact, the Berends, Giele and Kuijf (BGK) form of the MHV gravity amplitude [23],

M tree
n (1−, 2−, 3+, · · · , n+)

= −i 〈1 2〉8 ×

[

[1 2] [n − 2n − 1]

〈1n − 1〉N(n)

(

n−3
∏

i=1

n−1
∏

j=i+2

〈i j〉
)

n−3
∏

l=3

(−[n|Kl+1,n−1|l〉)

+ P(2, 3, · · · , n − 2)

]

,

(2.2)

is rather more compact than that of the KLT sum (as is the expression in [24].) In the

above we use the definitions,

[k|Ki,j |l〉 ≡ 〈k+|/Ki,j |l
+〉 ≡ 〈l−|/Ki,j |k

−〉 ≡ 〈l|Ki,j |k] ≡

j
∑

a=i

[k a] 〈a l〉 , (2.3)

and N(n) =
∏

1≤i<j≤n 〈i j〉.

Both the KLT form of the MHV amplitude (2.1) and the above form (2.2) display a

feature not shared by the Yang-Mills expressions: they not only depend on the holomor-

phic variables λ, but also on the λ̄ - within the sij for the KLT expression and explicitly in

the BGK expression. In both cases this dependence is polynomial in the numerator. This

feature complicates the twistor space structure of any potential form of a MHV vertex for

gravity. For Yang-Mills, the holomorphic vertex corresponds simply to points lying on a

line in twistor space. For gravity the picture will be of points lying on the “derivative of

a δ-function” [5]. The practical difference is that both λ(q) and λ̄(q) must be correctly

continued off-shell. (The exception to this is the three-point vertex for which the gravity

MHV expression is holomorphic.) Various attempts have been made to find the off-shell

continuation [37, 38]. Despite the failure to find a MHV vertex formulation, gravity ampli-

tudes are amenable to recursive techniques [24, 25]. In [39] a current algebra formulation

was demonstrated for the MHV gravity amplitudes which also suggests that a MHV vertex

might exist.

3. NMHV graviton scattering amplitudes

We shall demonstrate the off-shell MHV vertex for gravity using the analytic structure

of the amplitudes with three negative helicity legs (known as “next-to-MHV“ or NMHV

amplitudes). The shift of [22] allows us to rewrite the NMHV amplitudes as products of

MHV-amplitudes and thus gives a CSW type expansion for these amplitudes directly, from

which we can identify the off-shell gravity MHV-vertices.

– 4 –
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Let us start by considering a generic n-point NMHV graviton amplitude Mn(m−
1 ,

m−
2 ,m−

3 , · · · , n+), where we label the three negative helicity legs 1, 2 and 3 by mi. We can

make the same continuation as in the Yang-Mills case,

ˆ̄λm1 = λ̄m1 + z 〈m2 m3〉 η̄ ,

ˆ̄λm2 = λ̄m2 + z 〈m3 m1〉 η̄ ,

ˆ̄λm3 = λ̄m3 + z 〈m1 m2〉 η̄ ,

(3.1)

which shifts the momentum of the negative helicity legs,

k̂mi
(z) = λmi

(

λ̄mi
+ z 〈mi−1 mi+1〉 η̄

)

, (3.2)

but leaves them on-shell, kmi
(z)2 = 0, while the combination km1(z) + km2(z) + km3(z) is

independent of z. Under the shift we obtain the analytic continuation of the amplitude

Mn(z) = M̂n into the complex plane. We use a ‘hat‘ to distinguish the unshifted objects,

a, from the shifted ones, â.

For a shifted amplitude we can evaluate the following contour integral at infinity,

1

2πi

∮

dz

z
Mn(z) = C∞ = Mn(0) +

∑

α

Resz=zα

Mn(z)

z
. (3.3)

If Mn(z) is rational with simple poles at points zα and C∞ vanishes, Mn(0) can be expressed

in terms of residues,

Mn(0) = −
∑

α

Resz=zα

Mn(z)

z
. (3.4)

The first condition is satisfied as a result of the general factorisation properties of ampli-

tudes, however the second is difficult to prove in general for gravity amplitudes.

The shifted amplitude has poles in z whenever a momentum invariant P̂ 2(z) vanishes.

Given the form of the shift, all momentum invariants apart from those containing all or none

of the negative helicities are z-dependent. Thus the NMHV amplitudes have factorisations

where two of the negative helicity legs lie on one side and one on the other. For the above

shift it can be checked that all factorisations involving the MHV googly 3-point amplitude

M(− + +) vanish. All poles of the amplitude must therefore factorise as,

MMHV(m−
i1

, · · · , P−) ×
i

P 2
× MMHV((−P )+,m−

i2
,m−

i3
, · · ·) , (3.5)

for ik = 1, 2 or 3, as we expect for a CSW-type expansion. P̂ 2(z) vanishes linearly in z,

so Mn(z) has simple poles when zα satisfies,

P̂ 2 = P 2 + zα 〈mi2 mi3〉 [η|P |mi1〉 = 0 . (3.6)

The residue at each pole is just the product of the two MHV tree amplitudes evaluated

at z = zα. Spinor products 〈i j〉 which are not zα dependent take their normal values, while

terms like 〈iP̂ 〉 are evaluated by noting,

〈i P̂ 〉 =
〈i P̂ 〉[P̂ η]

[P̂ η]
=

〈i|P |η]

ω
, (3.7)
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where P is the unshifted form. The objects ω will cancel between the two tree amplitudes

since the product has zero spinor weight in P . This substitution is precisely the CSW

prescription, λ(P ) −→ P |η].

For Yang-Mills this would be all we need, but for gravity we must also consider substi-

tutions for [i j] where i and/or j are one of the negative helicities or P̂ . These substitutions

are of the form,

[l+ P̂ ] =
[l+ P̂ ]〈P̂ α〉

〈P̂ α〉
=

ω[l+|P̂ |α〉

[η|P |α〉
=

ω[l+|P |mi1〉

[η|P |mi1〉
,

[m̂i2 m̂i3 ] = [mi2 mi3 ] + zα[η|Pmi2
mi3

|mi1〉 ,
[

m̂i1 l+
]

=
[

mi1 l+
]

+ zα

[

η l+
]

〈mi2 mi3〉 ,

(3.8)

where l+ denotes a positive helicity leg. We choose the arbitrary spinor α to be mi1 in order

to replace P̂ by P . Equations (3.7) and (3.8) are the specific substitutions that determine

the value of the MHV amplitudes on the pole and thus the MHV vertices.

Note that the form of the off-shell continuation,

ˆ̄λm1 = λ̄m1 + z 〈m2 m3〉 η̄ = λ̄m1 −
P 2η̄

[η|P |m1〉
, (3.9)

can be interpreted as yielding contact terms since the P 2 factor may cancel the pole.

We conclude that the NMHV graviton scattering amplitude can be expressed in terms

of MHV vertices as,

Mn(1−, 2−, 3−, 4+, . . . , n+) =

n−4
∑

r=0

∑

P(i1,i2,i3)

∑

P(di)

MMHV
r+3 (m̂−

i2
, m̂−

i3
, d+

1 , · · · , d+
r , P̂+)(zr)

×
i

P 2
mi1

dr+1···,n

× MMHV
n−r−1((−P̂ )−, m̂−

i1
, d+

r+1, · · · , n)(zr) .

(3.10)

Here the sums over Pr(i1, i2, i3) and Pr(di) are respectively sums over those permutations

of the negative and positive helicity legs that swap legs between the two MHV vertices.

We now turn to the discussion of the behaviour of Mn(z) for large z. By naive power

counting one might expect shifted gravity amplitudes to diverge at large z. However in

both ref. [24] and ref. [25] it was established by various techniques, including numerical

studies, that NMHV gravity amplitudes do vanish asymptotically under the BCFW shift.

This behaviour is difficult to prove either by analysing Feynman diagrams or using the KLT

relations, since large cancellations are inherent in both formalisms. Under the shift (3.1)

the amplitudes we have examined are very well behaved at large z, with

M6,7(z) ∼
1

z5
, (3.11)

for both the six and seven point NMHV amplitudes. This is a much stronger behaviour

than under the BCF shift where, M6,7(z) ∼ 1
z

.

If we choose a specific value for the reference spinor,

η̄ = λ̄a , (3.12)

– 6 –
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where a is one of the positive helicity legs, then the shift we use is a combination of three

BCF shifts involving the three negative helicity legs and a positive helicity leg a,

λa −→ λa + z1 〈2 3〉 λ1, λ̄1 −→ λ̄1 − z1 〈2 3〉 λ̄a ,

λa −→ λa + z2 〈3 1〉 λ2, λ̄2 −→ λ̄2 − z2 〈3 1〉 λ̄a ,

λa −→ λa + z3 〈1 2〉 λ3, λ̄3 −→ λ̄3 − z3 〈1 2〉 λ̄a ,

(3.13)

with z1 = z2 = z3. The shift on λa vanishes due to the Schouten identity. In ref. [25] it was

proven that the amplitude vanishes at infinity under a single shift of this form, providing

further evidence that the NMHV amplitude vanishes asymptotically under the shift (3.1).

3.1 Five-point example M(1−, 2−, 3−, 4+, 5+)

In this section we show, using an explicit example, how MHV vertices can be assembled into

graviton scattering amplitudes. The first non-trivial example is the five-point amplitude,

M(1−, 2−, 3−, 4+, 5+). This is a ’googly’ amplitude as it can be obtained by conjugating

the five-point MHV amplitude. As above we shift the negative helicity legs, here k1, k2 and

k3, and compute the residues of the amplitude M(1̂−, 2̂−, 3̂−, 4+, 5+)(z). The expansion

in terms of MHV vertices is non-trivial and reveals the structure of the MHV vertices.

Up to relabeling we have two types of residue,

D1(1
−, 2−, 3−, 4+, 5+) =M(2̂−, 3̂−, p̂+) ×

i

s23
× M((−p̂)−, 4+, 5+, 1̂−) ,

D2(1
−, 2−, 3−, 4+, 5+) =M(2̂−, 3̂−, 4+, p̂−) ×

i

s15
× M((−p̂)+, 5+, 1̂−) ,

(3.14)

which can be associated to the CSW diagrams,

2̂−

3̂−

5+

1̂−

4+

×
i

s23
×

1̂−

5+

3̂−

2̂−

4+

×
i

s15
×

Explicitly we find for the three-point function,

M(2̂−, 3̂−, p̂+) = i
〈2 3〉6

〈2 p̂〉2 〈p̂ 3〉2
= i

ω4 〈2 3〉6

[η|P23|2〉2[η|P23|3〉2
. (3.15)

The four point amplitude can be expressed in several ways, including,

M4((−p̂)−, 4+, 5+, 1̂−) = −is45A4((−p̂)−, 4+, 5+, 1̂−)A((−p̂)−, 5+, 4+, 1̂−)

=
i s45 〈p̂ 1〉8

〈p̂ 4〉 〈4 5〉 〈5 1〉 〈1 p̂〉 〈p̂ 5〉 〈5 4〉 〈4 1〉 〈1 p̂〉

=
i [4 5]

〈1 4〉 〈1 5〉 〈4 5〉

ω−4[η|P23|1〉
6

[η|P23|4〉[η|P23|5〉
,

(3.16)

giving the tree diagram as,

D1(1
−, 2−, 3−, 4+, 5+) =

i [4 5] [η|P23|1〉
6

〈1 4〉 〈1 5〉 〈4 5〉 [η|P23|4〉[η|P23|5〉

i

s23

i 〈2 3〉6

[η|P23|2〉2[η|P23|3〉2
. (3.17)
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For this particular diagram the prescription implied by the shift is equivalent to the CSW

rules for gauge theory as there is no need to find a continuation for λ̄.

For D2 we find,

D2(1
−, 2−, 3−, 4+, 5+) =

i 〈2 3〉7
[

2̂ 3̂
]

〈2 4〉 〈3 4〉 [η|P15|4〉2[η|P15|2〉[η|P15|3〉

i

s15

i [η|P15|5〉
6

[η|P15|1〉2 〈5 1〉2
.

(3.18)

This differs from the simple CSW prescription in the definition of
[

2̂ 3̂
]

. Here,
[

2̂ 3̂
]

= [2 3] + z (〈3 1〉 [η 3] + 〈1 2〉 [2 η]) = [2 3] + z[η|P23|1〉

= [2 3] −
P 2

15

〈2 3〉 [η|P15|1〉
[η|P23|1〉 .

(3.19)

With this substitution we can verify that the sum of diagrams is independent of η̄ and

equal to the conjugate of the five-point MHV tree amplitude.

For the six-point amplitude there are three diagrams. We have explicitly checked that

the sum over permutations of these diagrams is equal to the known form of the six-point

NMHV amplitude [25, 26]. Seven point NMHV amplitudes can be obtained explicitly using

the KLT relationships - at least using computer algebra. We have checked numerically that

the seven-point amplitudes obtained from the MHV vertices match those obtained from

the KLT relation.

3.2 Remarks on the twistor space structure of MHV gravity amplitudes

The twistor space structure of an amplitude refers to the support of the amplitude after

it has been Penrose transformed into twistor space variables. As was shown in ref. [5],

the twistor space support of an amplitude can be tested by simply acting with certain

differential operators, without having to resort to Penrose or Fourier transformations. The

operator of particular interest is the ’collinearity operator’,

[Fijk, η] = 〈i j〉

[

∂

∂λ̄k

, η

]

+ 〈j k〉

[

∂

∂λ̄i

, η

]

+ 〈k i〉

[

∂

∂λ̄j

, η

]

. (3.20)

The expressions for the NMHV gravity amplitudes can be used to test the twistor

structure of gravity amplitudes. In this case, MHV amplitudes are annihilated by multiple

applications of the collinearity operator,

F hMMHV
n = 0 , (3.21)

for some h. This is interpreted as the support being non-zero only if the points are “in-

finitesimally” close to a line in twistor space [5]. In ref. [36] it was explicitly shown that,

[Fijk, η]n−2MMHV
n = 0 , (3.22)

for n-point amplitudes with n ≤ 8. If we compare the action of the collinearity operator

on the amplitude with that of the shift,

λ̄i → λ̄i + z 〈j k〉 η̄ ,

λ̄j → λ̄j + z 〈k i〉 η̄ ,

λ̄k → λ̄k + z 〈i j〉 η̄ ,

(3.23)

– 8 –
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it can be seen that,

[Fijk, η]Mn(0) =
∂

∂z
M̂n(z)|z=0 . (3.24)

Equation (3.22) can thus be understood in terms of the number of sij factors in the KLT

form of the amplitude: each factor of sij can introduce at most one power of z and in the

KLT form there are n − 3 factors of sij in the n-point amplitude, so n − 2 applications of

[Fijk, η] are sufficient to annihilate the amplitude.

4. Beyond NMHV

In this section we will illustrate a generalisation of the CSW-rules for gravity amplitudes

with an example and verify the rules for this amplitude. Finally, we will present the generic

rules and discuss their proof via the BCFW approach.

4.1 General CSW rules

We will now extend the CSW rules for NMHV amplitudes into more generic rules for the

expansion of NnMHV amplitudes, that is amplitudes with n + 2 negative helicity legs and

the rest positive.

Consider the NnMHV amplitude with N external legs. One would, as in the Yang-Mills

case, begin by drawing all diagrams which may be constructed using MHV vertices. For the

off-shell continuation, three-point MHV vertices are non-vanishing. The contribution from

each diagram will be a product of (n + 1) MHV vertices and n propagators as indicated

below.

k−
i1

×
...
×

k+
i2

k+
i3 . . .

× ×
1

p2
j1

× . . . ×

In contrast to gauge theory the CSW diagrams for gravity have no cyclic ordering of the

external legs.

We denote internal momenta by pj for j = 1, . . . , n and external momenta by ki for

i = 1, . . . , N . We label the vertices by l for l = 1, . . . , (n + 1). The momenta leaving MHV

vertex l are collected into the set Kl and the number of external legs of MHV vertex l will

be denoted by Nl.

The contribution of a given diagram to the total amplitude can be calculated by

evaluating the product of MHV amplitudes and propagators,

Mn
N

∣

∣

CSW-diagram
=





∏

l=1,n+1

MMHV
Nl

(K̂l)





∏

j=1,n

i

p2
j

, (4.1)
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where the propagators are computed on the set of momenta ki and pj , and the MHV

vertices are evaluated for the momenta k̂i and p̂j. The definitions of these momenta are

given below.

The momenta ki are the given external momenta and the internal momenta, pj , are

given by momentum conservation on each MHV-vertex.

The momenta k̂i and p̂j are uniquely specified so that they are massless and obey

momentum conservation constraints at each vertex. Explicitly they are given by shifting

the negative helicity legs ki− ,

k̂i− = ki− + ai−λ(i−)η̄ , (4.2)

and leaving the positive helicity legs ki+ untouched. This introduces n + 2 parameters,

ai− . Overall momentum conservation is used to fix two of these parameters. Momentum

conservation at each vertex then gives the momenta p̂j as functions of ki and ai. Finally

the remaining parameters are fixed such that all internal momenta, p̂j, are massless,

p̂2
j = 0 . (4.3)

This gives n further linear constraints which are sufficient to fix the remaining ai uniquely

for a given spinor |η]. The MHV vertices in (4.1) can then be evaluated on the on-shell

momenta k̂ and p̂.

4.2 Example

As an example we will discuss an explicit CSW diagram that contributes to the 8-point

amplitude M(1−, 2−, 3+, 4+, 6+, 7−, 8−). The diagram is given by,

×
i

q2
× ×

i

p2
×

1−

2−

3+ 4+ 5+

6+

7−

8−

This specific diagram is interesting as none of its vertices can be written purely in terms

of angles, 〈 〉.

Following the algorithm from above the diagram contributes,

M(1̂−, 2̂−, 3+, q̂+)
i

q2
M((−q̂)−, 4+, 5+, (−p̂)−)

i

p2
M(p̂+, 6+, 7̂−, 8̂−) =

i
〈

1̂ 2̂
〉6

[3 q̂]
〈

2̂ 3
〉

〈3 q̂〉
〈

q̂ 1̂
〉 〈

2̂ q̂
〉 〈

3 1̂
〉

i

q2

i 〈p̂ q̂〉6 [4 5]

〈q̂ 4〉 〈4 5〉 〈5 p̂〉 〈q̂ 5〉 〈4 p̂〉

i

p2

i
〈

7̂ 8̂
〉6

[p̂ 6]
〈

8̂ p̂
〉

〈p̂ 6〉
〈

6 7̂
〉 〈

8̂ 6
〉 〈

p̂ 7̂
〉 .

(4.4)

The internal momenta, q and p, are given by momentum conservation: q +k1 +k2 +k3 = 0

and p + k6 + k7 + k8 = 0.

For the momenta k̂i, i = 1, 2, 7, 8, the shift is,

k̂i = ki + ai λiη̄, i = 1, 2, 7, 8 , (4.5)
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while the momenta ki with i = 3, 4, 5, 6 are untouched. The momenta p̂ and q̂ and the

parameters ai have to be fixed such that the momentum flowing through each of the vertices

is preserved,
∑

i=1,8

k̂i = 0 ,

q̂ + k̂1 + k̂2 + k3 = 0 ,

p̂ + k6 + k̂7 + k̂8 = 0 .

(4.6)

This leaves two free parameters which are fixed such that,

q̂2 = 0, p̂2 = 0 . (4.7)

There is a specific shift for each CSW diagram. In general, different diagrams that con-

tribute to the same amplitude yield different values of ai.

The various spinor products in (4.4) can be computed using the above conditions for

the ai and one finds expressions very reminiscent of those derived by CSW for gauge theory,

〈ki q̂〉 = 〈ki|(−P123)|η] /ωq , ωq = [q̂ η] ,

〈ki p̂〉 = 〈ki|(−P678)|η] /ωp , ωp = [p̂ η] ,

[3 q̂] = −
ωq

[

3|P̂123|p̂
〉

[

η|P̂123|p̂
〉 = −

ωq

[

3|P̂123P̂678|η
]

[

η|P̂123P̂678|η
] =

ωq [3|P45P678|η]

[η|P123P678|η]
,

[6 p̂] = −
ωp

[

6|P̂678|q̂
〉

[

η|P̂678|q̂
〉 = −

ωp

[

6|P̂678P̂123|η
〉

[

η|P̂678P̂123|η
〉 =

ωp [6|P45P123|η]

[η|P678P123|η]
.

(4.8)

Overall the ωq and ωp factors cancel and we find that (4.4) is given by,

i 〈1 2〉6 [3|P45P678|η]
[η|P123P678|η]

〈2 3〉 〈3|P123|η] [η|P123|1〉 〈2|P123|η] 〈3 1〉

i

t123

i [η|P678P123|η]6 [4 5]

[η|P123|4〉 〈4 5〉 〈5|P678|η] [η|P123|5〉 〈4|P678|η]

×
i

t678

i 〈7 8〉6 [η|P123P45|6]
[η|P123P678|η]

〈8|P678|η] [η|P678|6〉 〈6 7〉 〈8 6〉 [η|P678|7〉
.

(4.9)

The rules used to compute the above N2MHV diagram are a natural generalisation of the

NMHV-case. As we will discuss below, they follow from BCFW recursions, providing the

shifted amplitudes vanish for large z.

4.3 Proof of MHV-vertex rules

In this section we prove the validity of the CSW-like expansion of the graviton scattering

amplitudes in terms of MHV vertices with the substitution rules of the previous section.

We will employ a recursive proof analogous to that for Yang-Mills [22] where recursion was

employed upon the number of minus legs in the tree amplitudes. As a first step we will

prove the N2MHV case where four legs have negative helicity and later we will generalise

the proof for generic NnMHV amplitudes.
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4.4 MHV-vertex expansion for N2MHV amplitudes

We shall derive the CSW-like expansion for this amplitude by factorising the amplitude

in two steps. First we shall factorise the amplitude into a product of MHV and NMHV

amplitudes and then factorise the NMHV amplitudes to complete the expansion.

We first apply a holomorphic shift similar to the one discussed in [22] for gauge theory,

λ̄i −→ λ̄i + z1r
(1)
i η̄ , i = 1, · · · , 4 , (4.10)

where the r
(1)
i are restricted by momentum conservation and are all non-zero. This shift

of all negative helicity legs in MN2MHV allows us to factorise the full amplitude as,

MN2MHV =
∑

α

MMHV(z1,α)
i

P 2
α

MNMHV(z1,α) . (4.11)

The summation is over all the physical factorisations of the amplitude. In the above the

individual tree amplitudes are evaluated at the shifted momentum values. In particular

the trees depend upon the shifted, on-shell, momenta P̂α,(1). We consider a single term in

the summation corresponding to a specific pole,

Dα = MMHV(z1,α)
i

P 2
α

MNMHV(z1,α) , (4.12)

and evaluate this by determining the poles in Dα(z2) under the shift,

λ̄i −→ λ̄i + z2r
(2)
i η̄, i = 1, · · · , 4 . (4.13)

The r
(2)
i are restricted to maintain momentum conservation and to leave the pole unshifted,

P 2
α −→ P 2

α , (4.14)

which corresponds to the constraint,

0 =
∑

i

z2r
(2)
i [η|Pα|i〉 . (4.15)

where i runs over the indices (1, . . . , 4) which lie in the set α. This condition also implies

that the internal legs remain on-shell.

This gives three linear constraints on the four z2r
(2)
i . The function Dα(z2) is rational

and, since the two tree amplitudes do not have simultaneous poles, has simple poles. The

poles occur where MNMHV factorises into pairs of MHV amplitudes and thus, assuming

Dα(z2) vanishes at infinity, we have,

Dα =
∑

β

Dα,β =
∑

β

MMHV(z)
i

P 2
α

×

(

MMHV(z)
i

P 2
β,(1)

MMHV(z)

)

. (4.16)

where z indicates the functional dependance upon the two shifts (4.10) and (4.13). Explic-

itly, all three MHV amplitudes are evaluated at the shifted points,

λ̄i → λ̄i + (z1,αr
(1)
i + z2,βr

(2)
i )η̄. (4.17)
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In eq. (4.16) we have a shifted propagator P 2
β,(1) rather than P 2

β since we are factorising the

shifted tree amplitude MNMHV. Hence this is not immediatelly an MHV diagram term.

but is one contribution to the MHV diagram with unshifted propagators i/P 2
α and i/P 2

β .

There is a second contribution to the same MHV diagram which arises from the term with

a P 2
β pole in the sum in eq. (4.11). Expansion of this yields,

Dβ,α =

(

MMHV(z′)
i

P 2
α,(1)

MMHV(z′)

)

×
i

P 2
β

MMHV(z′) , (4.18)

where the MHV amplitudes are now evaluated at the points

λ̄i → λ̄i + (z1,βr
(1)
i + z′2,αr′

(2)
i )η̄ . (4.19)

To prove the MHV-diagram expansion we need to show that the sum of the two terms

Dα,β + Dβ,α gives the correct diagram, i.e.,

MMHV(z)
i

P 2
α

(

MMHV(z) ×
i

P 2
β,(1)

MMHV(z)

)

+

(

MMHV(z′)
i

P 2
α,(1)

MMHV(z′)

)

×
i

P 2
β

MMHV(z′)

= MMHV(za)
i

P 2
α

MMHV(za)
i

P 2
β

MMHV(za) ,

(4.20)

with the MMHV(za) evaluated at the point za specified by the rules of the previous section.

We need two facts to show this:

• The product of the three tree amplitudes is the same in both cases and equal to the

desired value. This is equivalent to showing that z ≡ z′ ≡ za.

• There is an identity involving the product of propagators,

i

P 2
α

i

P 2
β,(1)

+
i

P 2
α,(1)

i

P 2
β

=
i

P 2
α

i

P 2
β

. (4.21)

Taking the first fact: in the final expression for the λ̄i the net effect of the two shifts

is to give a total shift of the form,

ˆ̄λi = λ̄i + aiη̄ . (4.22)

The ai are such that momentum conservation is satisfied and P̂ 2
α,(2) = P̂ 2

β,(2) = 0. As

discussed in the previous section, these constraints have a unique solution and so the λ̄i

take the same values irrespective of the order in which we factorise. The values of the

intermediate momenta, P̂ , are determined by momentum conservation which are precisely

the substitutions specified in the substitution rules.

The second fact can be shown in the following way. Considering the contour integral

of two shifted propagators
∮

dz

z

1

P 2
α(z)P 2

β (z)
(4.23)
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about a contour at infinity. Since the P 2
α(z) vanish at infinity this integral vanishes and is

also equal to the sum of its residues. Examining the residues we obtain,

1

P 2
α

1

P 2
β

−
1

P 2
α(zβ)

1

P 2
β

−
1

P 2
α

1

P 2
β (zα)

= 0 , (4.24)

which provides a proof of eq. (4.21).

Thus the two terms combine to give a single term which is the MHV-vertex diagram.

4.5 General case

The general case can be deduced by a repeated application of the process used in the

previous section. We give an outline of this here. Consider a general NnMHV amplitude

and shift all the negative helicity legs,

λ̄i → λ̄i + z1r
(1)
i η̄ , (4.25)

for a generic set of r
(1)
i . The amplitude can then be written as,

Mn(0) =
∑

α

Mn−kα+1(. . . , p̂)(z1,α)
i

P 2
α

Mkα+1((−p̂), . . .)(z1,α) . (4.26)

We evaluate an individual term in this by imposing a shift with parameter z2 that does

not shift P 2
α. We continue in this way until the we have an amplitude which is a product

of MHV amplitudes with propagators,

Dα1,α2,···αn
=

∏

(MMHV) ×
∏

i

i

P 2
αi,(i−1)

, (4.27)

where i/P 2
αi,(i−1) denotes the propagator we factorised on in the i-th step. As before we

gather together all terms with the same pole structure and combine them into a single

diagram. This again requires two things: firstly that the MHV amplitudes are evaluated

at the same point irrespective of the order and secondly that the pole terms sum to yield

the product of the unshifted poles.

For the first step we note that the net effect of the shifts is to apply an overall shift to

the n + 2 negative helicity legs of the form,

ˆ̄λi = λ̄i + aiη̄ . (4.28)

Since momentum conservation is preserved at each step, overall momentum conservation

is guaranteed at the final stage. This is equivalent to two linear constraints on the ai.

Secondly, the net effect at their final stage is that all the P̂αi
are on-shell, P̂ 2

αi
= 0. This

imposes n further linear constraints and we are left with a unique shift.

Summing over the different orderings now gives an expression of the form,

Mn(0)
∣

∣

CSW-diagram
=

(

∏

MMHV
)





∑

σ

∏

i

i

P̂ 2
ασ(i),(i−1)



 , (4.29)
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where σ denote the permutations of the labels i = 1, . . . , n. The rather complicated sum

in (4.29) simply yields the product of propagators, as can be seen by comparing with the

Yang-Mills case.

As the total amplitude can be expressed as a sum of terms, each with a specific pole

structure, the NnMHV amplitude Mn(0) can be written in a CSW form,

Mn(0) =
∑

CSW-diagram

Mn(0)
∣

∣

CSW-diagram
, (4.30)

with each CSW diagram contributing as

Mn(0)
∣

∣

CSW-diagram
=

(

∏

MMHV
)

∏

i

i

P 2
αi

, (4.31)

as given in the rules of the previous section.

5. Conclusions and comments

In this paper we have shown a new way of obtaining amplitudes for graviton scattering,

using a gravity MHV-vertex formalism that resembles the CSW formalism for calculating

tree amplitudes in Yang-Mills theory. Given the assumption that gravity amplitudes are

sufficiently well behaved under a BCFW-style analytic continuation to complex momenta,

we have presented a direct proof of the formalism and have illustrated its usefulness through

concrete examples such as NMHV amplitudes. Although we have presented MHV-vertices

for external gravitons only we expect the procedure to extend to other matter types using

supersymmetry to obtain the relevant MHV-vertex [6, 39].

Although the existence of the CSW formalism can be motivated by the duality with a

twistor string theory, such a motivation is not so clear for gravity. The natural candidate

string theories contain conformal supergravity [40] rather than conventional gravity. De-

spite this conventional gravity does seem to share features with Yang-Mills theory such as

the existence of a MHV-vertex construction and the coplanarity [36] of NMHV amplitudes

which hint at the existence of a twistor string dual theory.
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